Abstract

BackgroundCoccidioides immitis and C. posadasii cause coccidioidomycosis, a disease that is endemic to North and South America, but for Central America, the incidence of coccidioidomycosis has not been clearly established. Several studies suggest genetic variability in these fungi; however, little definitive information has been discovered about the variability of Coccidioides fungi in Mexico (MX) and Argentina (AR). Thus, the goals for this work were to study 32 Coccidioides spp. isolates from MX and AR, identify the species of these Coccidioides spp. isolates, analyse their phenotypic variability, examine their genetic variability and investigate the Coccidioides reproductive system and its level of genetic differentiation.MethodsCoccidioides spp. isolates from MX and AR were taxonomically identified by phylogenetic inference analysis using partial sequences of the Ag2/PRA gene and their phenotypic characteristics analysed. The genetic variability, reproductive system and level of differentiation were estimated using AFLP markers. The level of genetic variability was assessed measuring the percentage of polymorphic loci, number of effective allele, expected heterocygosity and Index of Association (IA). The degree of genetic differentiation was determined by AMOVA. Genetic similarities among isolates were estimated using Jaccard index. The UPGMA was used to contsruct the corresponding dendrogram. Finally, a network of haplotypes was built to evaluate the genealogical relationships among AFLP haplotypes.ResultsAll isolates of Coccidioides spp. from MX and AR were identified as C. posadasii. No phenotypic variability was observed among the C. posadasii isolates from MX and AR. Analyses of genetic diversity and population structure were conducted using AFLP markers. Different estimators of genetic variability indicated that the C. posadasii isolates from MX and AR had high genetic variability. Furthermore, AMOVA, dendrogram and haplotype network showed a small genetic differentiation among the C. posadasii populations analysed from MX and AR. Additionally, the IA calculated for the isolates suggested that the species has a recombinant reproductive system.ConclusionsNo phenotypic variability was observed among the C. posadasii isolates from MX and AR. The high genetic variability observed in the isolates from MX and AR and the small genetic differentiation observed among the C. posadasii isolates analysed, suggest that this species could be distributed as a single genetic population in Latin America.

Highlights

  • Coccidioides immitis and C. posadasii cause coccidioidomycosis, a disease that is endemic to North and South America, but for Central America, the incidence of coccidioidomycosis has not been clearly established

  • The 32 isolates of Coccidioides spp. from MX and AR were identified as C. posadasii with a nucleotide identity > 99%, trough of the phylogenetic inference analysis (Additional file 3)

  • Our results indicate that the partial Ag2/PRA Coccidioides spp. sequences obtained by Bialek et al [21] method are useful for identify C. posadasii from different geographical origins

Read more

Summary

Introduction

Coccidioides immitis and C. posadasii cause coccidioidomycosis, a disease that is endemic to North and South America, but for Central America, the incidence of coccidioidomycosis has not been clearly established. Species of the genus Coccidioides, primarily Coccidioides immitis and C. posadasii, cause coccidioidomycosis, which is a disease endemic to North and South America [1]. This mycosis is most prevalent in the Southwestern United States (US), Northern Mexico (MX), Central America and the foothills region of South America [2]. The illness begins with acute respiratory symptoms that are typically benign and vanish spontaneously; the disease can evolve into progressive clinical forms that spread to the skin and subcutaneous, visceral and skeletal tissues These severe progressive forms cause high morbimortality and are commonly associated with immunocompromised patients [6]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call