Abstract

As the most toxic mycotoxin of all of the fungal toxins, aflatoxin B1 (AFB1) has carcinogenesis, heptotoxicity, and immunotoxicity. DNA methylation plays a critical role in gene expression regulation of the pathological process. However, the relationship between DNA methylation and AFB1-induced immunotoxicity was not yet reported. Therefore, the objectives of this study were to verify AFB1-induced immunotoxicity and investigate the potential role of the DNA methyltransferase (DNMT) family in AFB1-induced immunotoxicity and the pathway mechanism in 3D4/21 cells. The results showed that AFB1 could induce cytotoxicity, apoptosis, pro-inflammatory cytokine expression, DNA damage, and oxidative stress and decrease phagocytotic capacity. Meanwhile, the levels of DNMT1 and DNMT3a were significantly increased in 0.04 and 0.08 μg/mL AFB1 compared to the control. Inhibition of DNMT1 and DNMT3a by 5-Aza-2dc could reverse changes of the above parameters. Further, the JAK2/STAT3 pathway was significantly activated in 0.04 μg/mL AFB1. Inhibition of p-JAK2 and p-STAT3 by AG490 could alleviate AFB1-induced immunotoxicity. Moreover, inhibition of DNMT1 and DNMT3a by 5-Aza-2dc could suppress the phosphorylation of JAK2 and STAT3. Taken together, AFB1-induced immunotoxicity is related to the JAK2/STAT3 pathway mediated by DNMTs in 3D4/21 cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.