Abstract

AbstractSeeing an object activates in the brain both visual and action codes. Crucial evidence supporting this view is offered by compatibility effect experiments (Ellis et al. (2007). J Exp Psychol: Hum Percept Perform): perception of an object can facilitate or interfere with the execution of an action (e.g. grasping) even when the viewer has no intention of interacting with the object. TRoPICALS (Caligiore et al. (2010). Psychol Rev) is a computational model developed to study compatibility effects. It provides a general hypothesis about the brain mechanisms underlying compatibility effects, suggesting that the top-down bias from prefrontal cortex (PFC), and its agreement or disagreement with the affordances of objects, plays a key role in such phenomena. Compatibility effects have been investigated in the presence of a distractor object in (Ellis et al. (2007). J Exp Psychol: Hum Percept Perform). The reaction times (RTs) results confirmed compatibility effects found in previous experiments without the distractor. Interestingly, results also showed an unexpected effect of the distractor: responding to a target with a grip compatible with the size of the distractor produced slower RTs in comparison to the incompatible case. Here we present an enhanced version of TRoPICALS that reproduces and explains these new results. This explanation is based on the idea according to which PFC might play a double role in its top-down guidance of action selection producing: (a) a positive bias in favor of the action requested by the experimental task; (b) a negative bias directed to inhibiting the action evoked by the distractor. The model also provides two testable predictions on the possible consequences on compatibilities effects of the target and distractor objects in Parkinsonian disease patients with damages of inhibitory circuits.

Highlights

  • Compatibility effect experiments demonstrate that seeing an object activates both visual and action representations in the brain

  • Compatibility effects experiments in the presence of a distractor object show that responding to a target with a grip compatible with the size of the distractor produced slower RTs in comparison to the incompatible case [1]

  • This work presents an enhanced version of the TRoPICALS model [2] that reproduces and explains these results

Read more

Summary

Introduction

Compatibility effect experiments demonstrate that seeing an object activates both visual and action representations in the brain.

Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.