Abstract

The continuing depletion of nutrients from agricultural soils in Sub-Saharan African is accompanied by a lack of substantial progress in crop yield improvement. In this paper we investigate yield gaps for corn under two scenarios: a micro-dosing scenario with marginal increases in nitrogen (N) and phosphorus (P) of 10 kg ha−1 and a larger yet still conservative scenario with proposed N and P applications of 80 and 20 kg ha−1 respectively. The yield gaps are calculated from a database of historical FAO crop fertilizer trials at 1358 locations for Sub-Saharan Africa and South America. Our approach allows connecting experimental field scale data with continental policy recommendations. Two critical findings emerged from the analysis. The first is the degree to which P limits increases in corn yields. For example, under a micro-dosing scenario, in Africa, the addition of small amounts of N alone resulted in mean yield increases of 8% while the addition of only P increased mean yields by 26%, with implications for designing better balanced fertilizer distribution schemes. The second finding was the relatively large amount of yield increase possible for a small, yet affordable amount of fertilizer application. Using African and South American fertilizer prices we show that the level of investment needed to achieve these results is considerably less than 1% of Agricultural GDP for both a micro-dosing scenario and for the scenario involving higher yet still conservative fertilizer application rates. In the latter scenario realistic mean yield increases ranged between 28 to 85% in South America and 71 to 190% in Africa (mean plus one standard deviation). External investment in this low technology solution has the potential to kick start development and could complement other interventions such as better crop varieties and improved economic instruments to support farmers.

Highlights

  • Farming looks mighty easy when your plow is a pencil and you’re a thousand miles from the corn field. –Dwight D

  • The median r2 obtained by fitting the individual crop trials equaled 0.81; the 25th percentile equaled 0.66 and the 75th percentile 0.91

  • In reality a full development blueprint would need to have a broader scope and costs would be compounded with investments in roads, agricultural extension, market access, etc. [5,6]

Read more

Summary

Introduction

Farming looks mighty easy when your plow is a pencil and you’re a thousand miles from the corn field. –Dwight D. The FAO [1] suggests that 70% of the required increase in crop production in developing countries should be realized through boosting the productivity of fields already under cultivation. From 1960 to 2000, yields of staple crops such as wheat, rice and corn increased in South America by over 180% while African yields did not improve substantially (see Figure 1). These contrasting trajectories reflect disparities in infrastructure development, primary crop types grown, agricultural R&D and extension capacities, socioeconomic conditions as well as environmental differences [10;11;12]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.