Abstract

We study the Affleck-Dine (AD) baryogenesis in the inflating curvaton scenario, when the curvaton is a moduli field with \U0001d4aa(10–102 TeV) mass. A moduli field with such mass is known to be free from the Polonyi problem, and furthermore its decay products can explain the present cold dark matter abundance. In our scenario, it further explains the primordial curvature perturbation and the present baryon density all together. The current observational bound on the baryon isocurvature perturbation, which severely constrains the AD baryogenesis with the original oscillating moduli curvaton scenario, is shown to put practically negligible constraint if we replace the oscillating curvaton with the inflating curvaton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.