Abstract
Invented to address the high-throughput screening (HTS) demands of combinatorial chemistry, affinity selection-mass spectrometry (AS-MS) utilizes binding interactions between ligands and receptors to isolate pharmacologically active compounds from mixtures of small molecules and then relies on the selectivity, sensitivity, and speed of mass spectrometry to identify them. No radiolabels, fluorophores, or chromophores are required. Although many variations of AS-MS have been devised, three approaches have emerged as the most flexible, productive, and popular, and they differ primarily in how ligand-receptor complexes are separated from nonbinding compounds in the mixture. These are pulsed ultrafiltration (PUF) AS-MS, size exclusion chromatography (SEC) AS-MS, and magnetic microbead affinity selection screening (MagMASS). PUF and SEC AS-MS are solution-phase screening approaches, and MagMASS uses receptors immobilized on magnetic microbeads. Because pools of compounds are screened using AS-MS, each containing hundreds to thousands of potential ligands, hundreds of thousands of compounds can be screened per day. AS-MS is also compatible with complex mixtures of chemically diverse natural products in extracts of botanicals and fungi and microbial cultures, which often contain fluorophores and chromophores that can interfere with convention HTS. Unlike conventional HTS, AS-MS may be used to discover ligands binding to allosteric as well as orthosteric receptor sites, and AS-MS has been useful for discovering ligands to targets that are not easily incorporated into conventional HTS such as membrane-bound receptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.