Abstract

Modern molecular docking comprises the prediction of pose and affinity. Prediction of docking poses is required for affinity prediction when three-dimensional coordinates of the ligand have not been provided. However, a large number of feature engineering is required for existing methods. In addition, there is a need for a robust model for the sequential combination of pose and affinity prediction due to the probabilistic deviation of the ligand position issue. We propose a pipeline using a bipartite graph neural network and transfer learning trained on a re-docking dataset. We evaluated our model on the released data from drug design data resource grand challenge 4 (D3R GC4). The two target protein data provided by the challenge have different patterns. The model outperformed the best participant by 9% on the BACE target protein from stage 2. Further, our model showed competitive performance on the CatS target protein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.