Abstract

Protons at the water/vapor interface are relevant for atmospheric and environmental processes, yet characterizing their surface affinity on the quantitative level is still challenging. Here we utilize phase-sensitive sum-frequency vibrational spectroscopy to quantify the surface density of protons (or their hydronium form) at the intrinsic water/vapor interface through inspecting the surface-field-induced alignment of water molecules in the electrical double layer of ions. With hydrogen halides in water, the surface adsorption of protons is found to be independent of specific proton-halide anion interactions and to follow a constant adsorption free energy, ΔG ≈ -3.76 (±0.79) kJ/mol, corresponding to a partitioning coefficient of the surface with respect to bulk water by 3.3∼6.2, for bulk ion concentrations up to 0.3 M. Our spectroscopic study not only is of importance in atmospheric chemistry but also offers a microscopic-level basis to develop advanced quantum-mechanical models for molecular simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.