Abstract

Isopeptidase is a novel eukaryotic enzyme that cleaves a structural chromatin protein, A24, stoichiometrically into H2A and ubiquitin. To understand the rapid turnover of ubiquitin in mitosis as wells as the high specific activity of the enzyme associated with metaphase chromosomes, attempts were made to determine chromatin constituents that show high affinity for this enzyme. Endogenous protease-free isopeptidase was prepared from calf thymus and applied to a Sepharose 4B affinity column on which histones, DNA, NHCP and ubiquitin were respectively immobilized. The enzyme proved to bind only histones. To further determine which of the histone fractions is involved, affinity columns with each histone fraction were also used. The enzyme showed affinity for all histone fractions. However, the strength of affinity varied in the order H2A>H3 H2B≥H4≫H1, being inversely correlated with the ratio of basic/acidic amino acids in these molecules. These results suggest that the turnover of A24 in mitosis is controlled, at least in part, by the affinity of enzyme for histones, and also that such affinity is caused by a mechanism which cannot be explained simply by the electrostatic interaction between negatively charged enzyme molecules and positively charged histones.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.