Abstract

For many applications, antibodies need to be engineered toward maximum affinity. Strategies are in demand to especially optimize this process toward slower dissociation rates, which correlate with the (un)binding forces. Using single-molecule force spectroscopy, we have characterized three variants of a recombinant antibody single-chain Fv fragment. These variants were taken from different steps of an affinity maturation process. Therefore, they are closely related and differ from each other by a few mutations only. The dissociation rates determined with the atomic force microscope differ by one order of magnitude and agree well with the values obtained from surface plasmon resonance measurements. However, the effective potential width of the binding complexes, which was derived from the dynamic force spectroscopy measurements, was found to be the same for the different mutants. The large potential width of 0.9 nm indicates that both the binding pocket and the peptide deform significantly during the unbinding process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.