Abstract

We sought to identify peptides associated with activity in the primary structure of human placental 3 beta-hydroxy-delta 5-steroid dehydrogenase/isomerase (3 beta-HSD/isomerase). Purified human placental 3 beta-HSD/isomerase was affinity-radioalkylated by 2 alpha-bromo [2'-14C]acetoxyprogesterone (2 alpha-[14C]BAP) in the presence or absence of the reduced diphosphopyridine nucleotide, NADH. NADH protected both 3 beta-HSD and isomerase from inactivation by 2 alpha-[14C]BAP. Tryptic peptides of unprotected and NADH-protected radioalkylated enzyme were purified by high-pressure liquid chromatography. The amino acid sequence of each radiolabeled peptide was determined and localized within the cDNA-derived primary structure of the enzyme. According to the sequence analyses, NADH shifted radioalkylation by 2 alpha-[14C]BAP away from the Arg-250 peptide (251GQFYYISDDTPHQSYDNLNYTLSK274) and toward the Lys-135 tryptic peptide (136EIIQNGHEEEPLENTWPAPYPHSK159). Based on amino acid analysis to quantitate radioactivity incorporated per nmol peptide, NADH decreased the radiolabeling of His262 in the Arg-250 peptide by 8.2-fold. His142 in the Lys-135 peptide was radiolabeled by 2 alpha-[14C]BAP only in the presence of NADH. We have previously reported that the substrate pregnenolone blocks the inactivation of 3 beta-HSD by 2 alpha-[14C]BAP through the protection of His262 in the Arg-250 peptide. Protection by NADH against the inactivation of isomerase as well as 3 beta-HSD is evidence that 2 alpha-[14C]BAP binds at the active sites of both enzyme activities. Because the same Arg-250 peptide has been affinity-alkylated in studies that targeted each of the two activities, we propose that the 3 beta-HSD and isomerase reactions are catalyzed in this region of the enzyme protein.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call