Abstract

Colloidal semiconductor quantum dots (QDs), metal nanoparticles, and cellulose paper are materials with numerous applications in bioanalysis and beyond. The functional properties of QDs and metal NPs are substantially different than those of cellulose, such that their integration with cellulose paper is potentially enabling for many applications. Here, we characterize and evaluate multiple chemistries that modify cellulose paper substrates for the affinity-based immobilization of QDs, gold nanoparticles (Au NPs), and platinum nanoparticles (Pt NPs). These chemistries include grafting of cellulose fibers with imidazole and dithiol groups, as well as the aminosilanization of cellulose fibers (both with and without subsequent grafting with dithiol groups). Cellulose modifications and nanoparticle immobilization are characterized by multiple techniques, including, but not limited to, X-ray photoelectron spectroscopy, scanning electron microscopy, and optical imaging, extinction, and fluorescence measurements. We demonstrate the on-paper immobilization of color-tuned mixtures of QDs, on-paper patterning of QDs by microcontact printing, and post-immobilization enhancement of energy transfer and model assays of protease activity. The robustness of QD photoluminescence is also evaluated between immobilization chemistries. Paper-immobilized Au NPs and Pt NPs are evaluated as potential substrates for SERS and as supported catalysts for a model decolorization reaction. Our cumulative results indicate that there may not be a one-size-fits-all immobilization chemistry. Instead, the immobilization chemistry should be tailored and optimized for the downstream application.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call