Abstract

We tested an affinity hemodialysis technique designed to efficiently remove HIV and toxic viral proteins from blood. Miniature polyethersulfone hollow-fiber dialysis cartridges (200-500 nm pore) were packed with anti-HIV antibodies covalently coupled to agarose beads and sealed inside the cartridge. Cell culture fluids, plasma, or infected blood (7-15 ml) containing HIV-1 were circulated over the cartridge at 0.7-10 ml/min and the rate of removal of HIV measured by PCR and p24 ELISA. The technique removed up to 98% of HIV-1 particles from cell culture supernatants. Affinity hemodialysis also efficiently captured cultured HIV from human blood plasma (90%) and native HIV from infected blood (83% to 100%). Viral capture followed first-order kinetics (t(1/2) = 2.8 h). Variations in antibody type, matrix linkage (protein G versus direct coupling), bead pore size, and temperature of operation (25-37 degrees C) had only small effects. Although some binding was nonspecific, direct binding to the immobilized antibodies appeared to be the predominant mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.