Abstract

Haemophilus influenzae can acquire heme from hemopexin for use as a source of both essential porphyrin and iron. In classical ligand-binding studies, we observed time-dependent, saturable, and displaceable binding of human 125I-labelled hemopexin to intact cells of H. influenzae type b (Hib) strain 760705 grown in an iron-restricted medium. From these experiments, which demonstrate that hemopexin associates with a single class of binding site, the affinities (Kds) and receptor numbers were calculated for heme-hemopexin (Kd, 205 nM; 3,200 receptors per cell) and apohemopexin (Kd, 392 nM; 4,400 receptors per cell). Thus, Hib expresses a specific hemopexin receptor which shows some preference for the heme-protein complex. Affinity chromatography on hemopexin-Sepharose 4B of detergent-solubilized membranes from Hib strain 760705 results in the copurification of three proteins with molecular masses of 57, 38, and 29 kDa. Trypsinization of whole cells of Hib 760705 abolishes hemopexin binding and correlates with the disappearance of the 57-kDa hemopexin-binding protein and appearance of a 52-kDa species which does not bind either hemopexin in ligand blot assays or a monoclonal antibody (MAbT11-30) raised against the 57-kDa protein. From immunoblotting assays and NH2-terminal amino acid sequence analysis, the 38-kDa protein isolated following hemopexin affinity chromatography was identified as the porin protein P2. These data, taken together with the receptor-binding studies which support a single class of hemopexin-binding site, suggest that P2 and the 29-kDa protein function as accessory proteins to the 57-kDa hemopexin-binding protein to facilitate the uptake of heme from receptor-bound hemopexin. To determine whether hemopexin binding and the 57-kDa protein are conserved in Haemophilus strains, whole-cell dot blots and immunoblots of the outer membrane proteins prepared from strains belonging to each of 21 different Hib outer membrane protein subtypes, six nontypeable strains, and five Haemophilus parainfluenzae strains were probed with either hemopexin or MAbT11-30. Only the H. parainfluenzae strains which lack the 57-kDa protein do not bind hemopexin. Since H. influenzae has also been shown to produce a soluble 100-kDa hemopexin-binding protein, cell-free culture supernatants were also examined for the presence of this protein. Apart from Hib 760705 and H. parainfluenzae, the 100-kDa hemopexin-binding protein was detected in all the other Haemophilus strains. The abilities of Hib 760705 to both bind and acquire heme from hemopexin without expressing a 100-kDa soluble hemopexin-binding protein show that in strain 760705, this 100-kDa protein is not essential for the utilization of heme from hemopexin.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.