Abstract

De-etiolation is the first developmental process under light control allowing the heterotrophic seedling to become autotrophic. The phytohormones cytokinins (CKs) largely contribute to this process. Reversible phosphorylation is a key event of cell signaling, allowing proteins to become active or generating a binding site for specific protein interaction. 14-3-3 proteins regulate a variety of plant responses. The expression, hormonal regulation, and proteomic network under the control of 14-3-3s were addressed in tomato (Solanum lycopersicum L.) during blue light-induced photomorphogenesis. Two isoforms were specifically investigated due to their high expression during tomato de-etiolation. The multidisciplinary approach demonstrated that TFT9 expression, but not TFT6, was regulated by CKs and identified cis-regulating elements required for this response. Our study revealed >130 potential TFT6/9 interactors. Their functional annotation predicted that TFTs might regulate the activity of proteins involved notably in cell wall strengthening or primary metabolism. Several potential interactors were also predicted to be CK-responsive. For the first time, the 14-3-3 interactome linked to de-etiolation was investigated and evidenced that 14-3-3s might be involved in CK signaling pathway, cell expansion inhibition and steady-state growth rate establishment, and reprograming from heterotrophy to autotrophy. Biological significanceTomato (Solanum lycopersicum L.) is one of the most important vegetables consumed all around the world and represents probably the most preferred garden crop. Regulation of hypocotyl growth by light plays an important role in the early development of a seedling, and consequently the homogeneity of the culture. The present study focuses on the importance of tomato 14-3-3/TFT proteins in this process. We provide here the first report of 14-3-3 interactome in the regulation of light-induced de-etiolation and subsequent photomorphogenesis. Our data provide new insights into light-induced de-etiolation and open new horizons for dissecting the post-transcriptional regulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.