Abstract

A novel approach to detecting affinity interactions that combines fluorescence anisotropy with capillary electrophoresis (FACE) was developed. In the method, sample is injected into a capillary filled with buffer that contains a fluorescent probe that possesses low fluorescence anisotropy. If proteins or other large molecules in the sample bind the fluorescent probe, their migration through the capillary can be detected as a positive anisotropy shift. Thus, the method provides both separation and confirmation of binding to the probe. Calculations based on combining the Perrin equation and dissociation constant were used to predict the effect of conditions on aniostropy detection. These calculations predict that low probe concentrations yield the best sensitivity while higher concentrations increase the dynamic range for detection of binding partner. The assay was applied to detection of G proteins using BODIPY FL GTPgammaS as the fluorescent probe. Experimental measurements exhibited trends in anisotropy with varying probe and protein concentrations that were consistent with the calculations. The limit of detection for G(alphai1) was 3 nM when the electrophoresis buffer contained 250 nM BODIPY FL GTPgammaS. FACE affinity assay is envisioned as a method that can quantify selected binding partners and screen complex samples for compounds that possess affinity for a particular small molecule that is used as a probe.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.