Abstract

1. At 37 degrees C in 0.1 M NaCl the pKa of hyoscine (10 mM) is 7.53; the non-protonated form has about one-tenth of the affinity (log K = 8.58) of the protonated form (log K = 9.58) for muscarine-sensitive receptors of the guinea-pig ileum at 37 degrees C. 2. In the same conditions the pKa of hyoscine N-oxide is 5.78 and the non-protonated form is inactive on the ileum whereas the protonated form is highly active with log K estimated to be 9.9, at least as active as hyoscine methobromide (log K = 9.85). 3. Hyoscine methobromide appears to occupy less space in water than atropine methobromide; hyoscine hydrochloride occupies less space than hyoscyamine hydrochloride: the non-protonated forms are slightly bigger. Hyoscine N-oxide hydrobromide is slightly smaller than hyoscine methobromide but the removal of the proton is accompanied by a reduction in volume, such as is seen with other zwitterions. 4. These differences in volume indicated a reduction in entropy on solution which may allow a greater increase in entropy on binding to receptors and hence greater affinity. The higher activity of hyoscine itself could also be due to the presence of the N-methyl group in the axial position, rather than equatorial as in hyoscyamine or atropine. 5. The different position of the N-methyl group may partly explain why the pKa of hyoscine is 2 units lower than that of hyoscyamine or atropine. It is also probable that the unionized form of hyoscine is stabilized by hydration. 6. Although hyoscine N-oxide is only weakly active at pH 7.6, it is present in a highly active form in the acid environment of the stomach and so might be expected to act selectively at this site.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call