Abstract

Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a common autoimmune encephalitis presenting with psychosis, dyskinesias, autonomic dysfunction and seizures. The underlying autoantibodies against the NR1 subunit are directly pathogenic by disrupting synaptic NMDAR currents. However, antibody titers correlate only partially with the clinical outcome, suggesting the relevance of other factors such as antibody affinity. We thus determined the binding curves of human monoclonal autoantibodies and patients’ cerebrospinal fluid (CSF) against NR1-expressing HEK293 cells using flow cytometry. Antibody affinity was highly variable with binding constants (half-maximal concentration, c50) ranging from 1 to 74 µg/ml for monoclonal antibodies. Comparing values of individual monoclonal antibodies with human CSF samples suggested that the CSF signal is predominantly represented by higher-affinity antibodies, potentially in a concentration range of NR1 antibodies between 0.1 and 5 µg/ml, roughly reflecting 1–10% of total CSF IgG in NMDAR encephalitis. Binding curves further depended on the CSF composition which must be considered when interpreting established clinical routine assays. Normalization of measurements using reference samples allowed high reproducibility. Accurate and reproducible measurement of NR1 antibody binding suggested that biophysical properties of the antibody might contribute to disease severity. Normalization of the data can be an elegant way to allow comparable inter-laboratory quantification of CSF NR1 antibody titers in autoimmune encephalitis patients, a prerequisite for use as surrogate markers in clinical trials. Based on our calculations, low-affinity antibodies can easily remain undetected in routine cell-based assays, indicating that their relation to clinical symptoms should be analyzed in future studies.

Highlights

  • Anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is a common autoimmune encephalitis presenting with psychosis, amnesia and dyskinesias, often progressing to severe autonomic dysfunction, seizures and reduced levels of

  • Antibody binding to HEK293 cells was quantified via flow cytometry (Fig. 1a–e)

  • Compared to control antibodies (Fig. 1e, black), monoclonal NR1 antibody binding led to a concentration-dependent shift of the secondary antibody fluorescence curve (Fig. 1e, blue), with an increase of the median fluorescence intensity (MFI)

Read more

Summary

Introduction

NR1 antibody titers than patients with mild disease. This finding suggests the relevance of other parameters which could include biophysical properties of the antibody itself, such as antibody affinity or epitope binding, or antibodyindependent factors, such as the patient-specific glutamate receptor turnover. Antibody affinity defines the strength of interaction between an epitope (in this case the NMDAR) and the antigen-binding site of an antibody. We applied binding analyses of human monoclonal antibodies and patients’ CSF against NR1-expressing HEK293 cells with flow cytometry, asking for the binding curves of individual antibodies and whole CSF, and estimation of specific NR1 antibody concentrations in human samples

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call