Abstract
Let G be a compact and connected semisimple Lie group, H a closed subgroup, g (resp. h) the Lie algebra of G (resp. H), B the Killing form of g, g the normal metric on the homogeneous space G/H which is induced by -B. Let D be an invarint connection with Weyl structure (D, g, ω) in the tangent bundle over the normal homogeneous Riemannian manifold (G/H, g) which is projectively flat. Then, the affine connection D on (G/H, g) is a Yang-Mills connection if and only if D is the Levi-Civita connection on (G/H, g).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.