Abstract
Given a normal affine surface V defined over \({\mathbb{C}}\), we look for algebraic and topological conditions on V which imply that V is smooth or has at most rational singularities. The surfaces under consideration are algebraic quotients \({\mathbb{C}^n/G}\) with an algebraic group action of G and topologically contractible surfaces. Theorem 3.6 can be considered as a global version of the well-known result of Mumford giving a smoothness criterion for a germ of a normal surface in terms of the local fundamental group.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.