Abstract
In this paper, we consider one-dimensional generalized affine processes under the paradigm of Knightian uncertainty (the so-called nonlinear generalized affine models). This extends and generalizes previous results in Fadina et al. (2019) and Lütkebohmert et al. (2022). In particular, we study the case when the payoff is allowed to depend on the path, like it is the case for barrier options or Asian options. To this end, we develop the path-dependent setting for the value function relying on functional Itô calculus. We establish a dynamic programming principle which then leads to a functional nonlinear Kolmogorov equation describing the evolution of the value function. While for Asian options, the valuation can be traced back to PDE methods, this is no longer possible for more complicated payoffs like barrier options. To handle such payoffs in an efficient manner, we approximate the functional derivatives with deep neural networks and show that the numerical valuation under parameter uncertainty is highly tractable. Finally, we consider the application to structural modelling of credit and counterparty risk, where both parameter uncertainty and path-dependence are crucial and the approach proposed here opens the door to efficient numerical methods in this field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Theoretical and Applied Finance
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.