Abstract

In infinite-dimensional Lie theory, the affine Kac-Moody Lie algebras and groups play a distinguished role due to their many applications to various areas of mathematics and physics. Underlying these infinite-dimensional objects there are closely related group schemes and Lie algebras of finite type over Laurent polynomial rings. The language of SGA3 is perfectly suited to describe such objects. The purpose of this short article is to provide a natural description of the affine Kac-Moody groups and Lie algebras using this language.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.