Abstract

As is well known, there exists a canonical transversal vector field on a non-degenerate affine hypersurface M. This vector field is called the affine normal. The second fundamental form associated to this affine normal is called the affine metric. If M is locally strongly convex, then this affine metric is a Riemannian metric. And also, using the affine normal and the Gauss formula one can introduce an affine connection ∇ on M which is called the induced affine connection. Thus there are in general two different connections on M: one is the induced connection ∇ and the other is the Levi Civita connection of the affine metric h. The difference tensor K is defined by K(X, Y) = KXY — ∇XY — XY. The cubic form C is defined by C = ∇h and is related to the difference tensor by.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.