Abstract

In this paper we investigate the performance of low-density parity-check (LDPC) codes in long haul optical communication systems. We are particularly concerned with high-rate codes based on affine geometries. These codes have large minimum distance and simple iterative decoding algorithms, which makes them good candidates for high-speed applications such as optical communications. We consider both bit-flipping iterative decoding and iterative decoding based on min-sum algorithms. We demonstrate a significant performance improvement with respect to the state-of-the-art error control schemes employed in long-haul systems. Contrary to the common practice of considering the performance of error controlling schemes using the AWGN channel assumption, we consider the performance of the proposed LDPC schemes taking into account in a natural way all major impairments in long-haul optical transmission such as ASE noise, pulse distortion due to fiber nonlinearities, chromatic dispersion or polarization dispersion, crosstalk effects, intersymbol-interference, etc.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.