Abstract
The objective of the present paper is the study of affine transformations of the plane, which provide self-affine curves as attractors. The properties of these curves depend decisively of the coefficients of the system of affnities involved. The corresponding functions are continuous on a compact interval. If the scale factors are properly chosen one can define Schauder bases of C[a, b] composed by affine fractal functions close to polygonals. They can be chosen bounded. The basis constants and the biorthogonal sequence of coefficient functionals are studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.