Abstract
Rotation symmetric Boolean functions have been extensively studied in the last 10 years or so because of their importance in cryptography and coding theory. Until recently, very little was known about the basic question of when two such functions are affine equivalent. Even the case of quadratic functions is nontrivial, and this was only completely settled in a 2009 paper of Kim, Park and Hahn. The much more complicated case of cubic functions was solved for permutations using a new concept of patterns in a 2010 paper of Cusick, and it is conjectured that, as in the quadratic case, this solution actually applies for all affine transformations. The patterns method enables a detailed analysis of the affine equivalence classes for various special classes of cubic rotation symmetric functions in n variables. Here the case of functions with 2 k variables (this number is especially relevant in computer applications) and generated by a single monomial is examined in detail, and in particular a formula for the number of classes is proved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.