Abstract

Motivated by the development of Side-Channel Analysis SCA countermeasures which can provide security upi¾?to a certain order, defeating higher-order attacks has become amongst the most challenging issues. For instance, Threshold Implementation TI which nicely solves the problem of glitches in masked hardware designs is able to avoid first-order leakages. Hence, its extension to higher orders aims at counteracting SCA attacks at higher orders, that might be limited to univariate scenarios. Although with respect to the number of traces as well as sensitivity to noise the higher the order, the harder it is to mount the attack, a d-order TI design is vulnerable to an attack at order $$d+1$$d+1. In this work we look at the feasibility of higher-order attacks on first-order TI from another perspective. Instead of increasing the order of resistance by employing higher-order TIs, we go toward introducing structured randomness into the implementation. Our construction, which is a combination of masking and hiding, is dedicated to TI designs and deals with the concept of affine equivalence of Boolean functions. Such a combination hardens a design practically against higher-order attacks so that these attacks cannot be successfully mounted. We show that the area overhead of our construction is paid off by its ability to avoid higher-order leakages to be practically exploitable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.