Abstract
Graham and Lehrer have defined cellular algebras and developed a theory that allows in particular to classify simple representations of finite dimensional cellular algebras. Many classes of finite dimensional algebras, including various Hecke algebras and diagram algebras, have been shown to be cellular, and the theory due to Graham and Lehrer successfully has been applied to these algebras. We will extend the framework of cellular algebras to algebras that need not be finite dimensional over a field. Affine Hecke algebras of type A and infinite dimensional diagram algebras like the affine Temperley–Lieb algebras are shown to be examples of our definition. The isomorphism classes of simple representations of affine cellular algebras are shown to be parameterised by the complement of finitely many subvarieties in a finite disjoint union of affine varieties. In this way, representation theory of non-commutative algebras is linked with commutative algebra. Moreover, conditions on the cell chain are identified that force the algebra to have finite global cohomological dimension and its derived category to admit a stratification; these conditions are shown to be satisfied for the affine Hecke algebra of type A if the quantum parameter is not a root of the Poincaré polynomial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.