Abstract
Difference-difference systems are suggested corresponding to the Cartan matrices of any simple or affine Lie algebra. In the cases of the algebras $A_N$, $B_N$, $C_N$, $G_2$, $D_3$, $A_1^{(1)}$, $A_2^{(2)}$, $D^{(2)}_N$ these systems are proved to be integrable. For the systems corresponding to the algebras $A_2$, $A_1^{(1)}$, $A_2^{(2)}$ generalized symmetries are found. For the systems $A_2$, $B_2$, $C_2$, $G_2$, $D_3$ complete sets of independent integrals are found. The Lax representation for the difference-difference systems corresponding to $A_N$, $B_N$, $C_N$, $A^{(1)}_1$, $D^{(2)}_N$ are presented.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Symmetry, Integrability and Geometry: Methods and Applications
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.