Abstract
The horseradish peroxidase (HRP) retrograde transport method was used to identify brainstem afferents to the cerebellar flocculus in the pigmented rat. Injections of the enzyme were made through recording microelectrodes, making it possible to localize the injection site by physiological criteria. Clearly, the largest number of afferents arise from the bilateral vestibular and perihypoglossal nuclei and from the contralateral dorsal cap (of Kooy) of the inferior olive. Additionally, a substantial number arise bilaterally from: (1) the nucleus reticularis tegmenti pontis (NRTP); (2) several of the cranial motor nuclei including the abducens, retrofacial and facial nuclei and the nucleus ambiguus; (3) the rostral part of the lateral reticular nucleus (subtrigeminal nucleus); (4) the raphe pontis and raphe magnus and (5) neurons intercalated among the medial longitudinal fasciculus (MLF) just rostral to the hypoglossal nucleus and another group rostral to the abducens nucleus. The basilar pontine nuclei contained a large number of lightly labeled neurons in all flocculus injections which were discretely located within the dorsolateral, lateral and medial divisions. These areas were labeled bilaterally but with a slight contralateral preponderance. Injection into the flocculus, but involving the adjacent ventral paraflocculus, produced a heavier labeling of pontine neurons with a slightly different distribution. Therefore, we tentatively conclude that the flocculus receives input from these pontine visual centers (dorsolateral, lateral and medial nuclei), perhaps through collateral projections from neurons projecting to the paraflocculus. The present study demonstrates strong similarities between the rat and other species studied (e.g., rabbit, cat, monkey) in terms of the brainstem nuclei projecting to the flocculus. Most noticeable in quantitative terms are the pathways known to mediate vestibular (vestibular and perihypoglossal nuclei) and visual (optokinetic) information (e.g., NRTP). Additionally, we can provide morphological evidence that the midline and paramedian pontine tegmentum, identified in the cat and monkey as containing saccade-related neurons, send large numbers of projections to the rat flocculus. Given these similarities, the rat may be a suitable animal model in which to study the pathways underlying visual-vestibular interaction and saccadic mechanisms in the flocculus.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.