Abstract

Recommender systems have been successfully applied to alleviate the information overload and assist user's decision makings. Emotional states have been demonstrated as effective factors in recommender systems. However, how to collect or predict a user's emotional state becomes one of the challenges to build affective recommender systems. In this paper, we explore and compare different solutions to predict emotions to be applied in the recommendation process. More specifically, we propose an approach named as collaborative chains. It predicts emotional states in a collaborative way and additionally takes correlations among emotions into consideration. Our experimental results based on a movie rating data demonstrate the effectiveness of affective prediction by collaborative chains in movie recommendations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.