Abstract

The room temperature and magnetic field-dependent dielectric, impedance and magnetoelectric (ME) coupling effect of polycrystalline AFe2O4/(Pb0.80Sr0.20)TiO3 (A = Mn, Ni and Co) bi-layered composite films have been investigated. The structural and microstructural analyses using the X-ray diffraction (XRD), atomic force microscopy (AFM) and scanning electron microscopy (SEM) reveal the presence of homogenous growth of both tetragonal and spinel phases without any extra phase and diffusion in the AFO/PST20 bi-layered composite films. Our results show that all composite films exhibit ferroelectric as well as considerable magnetic, indicating magnetoelectric coupling effect. Our results show that the dielectric and impedance properties of AFO/PST20 bi-layered composite films can be manipulated by the magnetic field at room temperature, also indicating the existence of magnetoelectric coupling. The impedance (Z′ and Z″) Nyquist plots show distinct electrical responses with the magnetic field. The maximum magnetoelectric coefficient (α) is found to be αME∼ 239 and ∼ 195 mV/cm/Oe for the MFO/PST20 and CFO/PST20 bi-layered composite films, respectively. The above results show that the AFO/PST20 bi-layered composite films are room-temperature multiferroic material that can be potentially used in magnetoelectric devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.