Abstract

Sparse coding allows the representation of complex data as a linear combination of basis sparse vectors (alternatively called atoms or codewords), a collection of which constitutes a dictionary. Dictionary learning is a learning process aimed at finding a small number of optimal basis vectors for a more accurate representation of the original data. The existing dictionary learning methods do not address the inherent uncertainty of the input data in their learning processes. To compensate for the uncertainty, and to obtain a flexible and effective learning system, we introduce a new adaptive fuzzy dictionary learning (AFDL) method for image classification purposes. The new method iteratively alternates between sparse coding based on a given dictionary and an adaptive fuzzy dictionary learning approach to learn (improve) dictionary atoms. The adjustability of the dictionary and coefficients vectors, in this method, provide us a more accurate and straight representation of input data. AFDL was applied on magnetic resonance images from the cancer image archive datasets, for medical image classification of cancer tumors. Finally, the overall experimental results clearly show that our approach outperforms its rival techniques in terms of accuracy, sensitivity, and specificity. Convergence speed in the experimental results shows that AFDL can achieve its acceptable precision in a reasonable time.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.