Abstract
Frequent item-set mining has been exhaustively studied in the last decade. Several successful approaches have been made to identify the maximal frequent item-sets from a set of typical item-sets. The present work has introduced a novel pruning mechanism which has proved itself to be significant time efficient. The novel technique is based on the Artificial Cell Division (ACD) algorithm which has been found to be highly successful in solving tasks that involve a multi-way search of the search space. The necessity conditions of the ACD process have been modified accordingly to tackle the pruning procedure. The proposed algorithm has been compared with the apriori algorithm implemented in WEKA. Accurate experimental evaluation has been conducted and the experimental results have proved the superiority of AFARTICA over apriori algorithm. The results have also indicated that the proposed algorithm can lead to better performance when the support threshold value is more for the same set of item-sets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.