Abstract
A natural problem at the interface of operator theory and numerical analysis is that of finding a (finite dimensional) matrix whose eigenvalues approximate the spectrum of a given (infinite dimensional) operator. It is well-known that classical work of Pimsner and Voiculescu produces explicit matrix models for an interesting class of nontrivial examples (e.g., many discretized one-dimensional Schrödinger operators). In this paper, we observe that the spectra of their models (often) converge in the strongest possible sense—in the Hausdorff metric—and demonstrate that the rate of convergence is, in general, best possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.