Abstract

We report 12 cyanobactin cyclic peptides, the aestuaramides, from the cultivated cyanobacterium Lyngbya aestuarii. We show that aestuaramides are synthesized enzymatically as reverse O-prenylated tyrosine ethers that subsequently undergo a Claisen rearrangement to produce forward C-prenylated tyrosine. These results reveal that a nonenzymatic Claisen rearrangement dictates isoprene regiochemistry in a natural system. They also reveal one of the mechanisms that organisms use to generate structurally diverse compound libraries starting from simple ribosomal peptide pathways (RiPPs).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.