Abstract
We analyze the spaces of images encoded by generative neural networks of the BigGAN architecture. We find that generic multiplicative perturbations of neural network parameters away from the photo-realistic point often lead to networks generating images which appear as “artistic renditions” of the corresponding objects. This demonstrates an emergence of aesthetic properties directly from the structure of the photo-realistic visual environment as encoded in its neural network parametrization. Moreover, modifying a deep semantic part of the neural network leads to the appearance of symbolic visual representations. None of the considered networks had any access to images of human-made art.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.