Abstract

Various types of emerging bioplastic containers present a range of physical and chemical properties and can perform differently from one another in production environments. Container performance may be affected by substrate moisture content. We quantified the effects of bioplastic container type and substrate volumetric water content (VWC) on the aesthetic and mechanical strength properties of bioplastic containers and on plant growth. Seedlings of ‘Divine Cherry Red’ new guinea impatiens (Impatiens hawkeri W. Bull) and ‘Pinot Premium Deep Red’ zonal geranium (Pelargonium ×hortorum L.H. Bailey) were transplanted into five types of 11.4-cm–diameter containers, four types made from bioplastics and one type made from petroleum-based plastic and used as a control. Plants were watered to container capacity at transplant, allowed to dry down to VWC thresholds of 0.20 or 0.40 m3·m−3, and subsequently maintained at desired set points by using a precision irrigation system controlled by soil moisture sensors. Total volume of water applied per plant to new guinea impatiens was affected by VWC and not container type, whereas irrigation volume was affected by both for geranium. Growth index and shoot dry mass (SDM) of new guinea impatiens and geranium were affected by VWC. Container type affected growth index and SDM of geranium only. Water use efficiency (WUE) of both species was similar regardless of container type and VWC. Aesthetic quality varied based on VWC for only one container type, which was made from a blend that included soy-based bioplastic. Containers manufactured with polyhydroxyalkanoates (PHA) and dried distiller’s grains and solubles (DDGS) or polylactic acid (PLA), soy polymer with adipic anhydride (SP.A), and a proprietary bio-based filler (BR) derived from modified DDGS were stronger when maintained at a lower VWC, 0.20 m3·m−3. Our findings indicate that restricting irrigation to the minimum needed to achieve the desired crop growth is a viable strategy for sustaining aesthetic quality and strength of bioplastic containers manufactured with plant protein–based fillers such as SP.A and BR. Other bioplastic containers, such as those made of PLA–lignin biocomposite, show durability equal to that of petroleum-based plastic containers and maintain pristine appearance regardless of substrate VWC during production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call