Abstract

Abstract Objectives Osteoporosis is a common chronic disease elicited by imbalance between osteoblastic bone formation and osteoclastic bone resorption. Marked increase in bone resorption leads to the aberrant fall in bone mineral density. With increasing age, there is also a significant reduction in bone formation. Aesculetin, a derivative of coumarin, possesses anti-inflammatory and antioxidant effects. The purpose of this study was to identify that aesculetin accelerated bone formation through increased osteoblastic differentiation and mineralization. Methods MC3T3-E1 cells were cultured with 1–10 μM aesculetin in α-MEM supplemented with 10 mM β-glycerophosphate, 50 μg/ml ascorbic acid and 10 μM dexamethasone for up to 21 days. Alkaline phosphatase (ALP) activity and staining, Alizarin red S staining, and Western blotting for induction of target proteins were conducted for the measurement of osteoblastic differentiation and mineralization. Results Aesculetin further enhanced the ALP activity of differentiated MC3T3-E1 cells, showing that aesculetin stimulated the osteoblast differentiation. Alizarin red S staining revealed that calcium deposits highly increased in 1–10 μM aesculetin-treated osteoblasts. In addition, aesculetin further increased cellular expression of the bone-forming markers of bone morphogenetic protein-2, osteopontin and collagen type I in osteoblasts. Conclusions Aesculetin was effective in enhancing osteoblast differentiation and bone mineralization for bone formation, indicating that this compound may be a potential agent for the treatment of osteoporosis. Funding Sources This work was supported by the BK21 FOUR(Fostering Outstanding Universities for Research, 4220200913807) funded by the National Research Foundation of Korea (NRF).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.