Abstract

<p>Auger electron spectroscopy (AES) has been used to investigate the chemical composition of the heteroepitaxial silicon carbide films grown on Si (100) and sapphire (0001) substrates at 900 °C by the MOCVD technique using DEMS precursor. Auger spectra were obtained from the surface and as a function of depth of 2 micron thick SiC films. AES measurements were performed under very high vacuum 10<sup>-9</sup> Torr conditions. Surface cleaning and depth profile studies were carried out by using Ar<sup>+</sup> ion beam sputtering. Auger spectra of the surface indicate Si LVV, C KLL and O KLL peaks. The Si LVV signals on the as prepared’ surfaces for both substrates indicated that the silicon was in the oxide state, which was removed after 15 min Ar+ ion cleaning. Depth profile studies showed, that after 20 min of ion cleaning the SiC films possess near stoichiometric composition. Moreover, the C KLL signal on the ion cleaned films showed the carbon in the carbide state. X-ray diffraction analysis of the SiC films on the sapphire (0001) and Si(100) substrates has shown a high intensity single peaks at 35.7°, which indicates the presence of SiC at orientation (111).</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.