Abstract

Accurate prediction of metal temperatures, blade tip and seal clearances in high pressure compressor and turbine air systems leads to dramatic improvements in overall aero-engine efficiency and component life. Fast transients during an engine flight profile may introduce large changes in geometry between adjacent rotor and stator components. The changing dynamics in a few critical seals and interfaces can change the dynamics of the entire engine, compromising efficiency, integrity and long service life. In this paper we present results of a coupled aero-thermo-mechanical transient simulation of a high pressure turbine assembly throughout an engine flight cycle. The fluid and solid model geometry is approximated as 2D axisymmetric. The problem, formulated as a four field coupled multiphysics system of equations, is simplified using a quasi-steady state assumption: the transient thermal solid problem is coupled to a sequence of steady fluid problems and static structural problems. The predicted results compare well with the experimental measurements over the entire fluid-solid interface. We show improvement in transient predictions isolating the effects of the solid domain deformation. The remaining transient error is linked to temporal uncertainties in the fluid model inlet boundary conditions which were taken as a spatial average of the main annulus flow conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.