Abstract

The present contribution addresses the aerothermal experimental and computational study of a trapezoidal cross-section model simulating a trailing edge cooling cavity with one rib-roughened wall and slots along two opposite walls. Highly resolved heat transfer distributions for the geometry with and without ribs are achieved using a steady state liquid crystals method in part II of this paper. The reference Reynolds number defined at the entrance of the test section is set at 67,500 for all the experiments. Comparisons are made with the flow field visualizations presented in part I of this paper. The results show the dramatic impact of the flow structures on the local and global heat transfer coefficients along the cavity walls. Of particular importance is the jet deflected by the rib-roughened wall and impinging on the opposite smooth wall. The experimental results are compared with the numerical predictions obtained using the finite volume, Reynolds-Averaged Navier–Stokes solver Calcul d'Écoulements Diphasiques Réactifs pour l'Énergétique (CEDRE).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call