Abstract
Abstract. The central Arctic cryosphere is influenced by the Arctic amplification (AA) and is warming faster than the lower latitudes. AA affects the formation, loss, and transport of aerosols. Efforts to assess the underlying processes determining aerosol variability are currently limited due to the lack of ground-based and space-borne aerosol observations with high spatial coverage in this region. This study addresses the observational gap by making use of total aerosol optical depth (AOD) datasets retrieved by the AEROSNOW algorithm over the vast cryospheric region of the central Arctic during Arctic spring and summer. GEOS-Chem (GC) simulations combined with AEROSNOW-retrieved data are used to investigate the processes controlling aerosol loading and distribution at different temporal and spatial scales. For the first time, an integrated study of AOD over the Arctic cryosphere during sunlight conditions was possible with the AEROSNOW retrieval and GC simulations. The results show that the spatial patterns observed by AEROSNOW differ from those simulated by GC. During spring, which is characterized by long-range transport of anthropogenic aerosols in the Arctic, GC underestimates the AOD in the vicinity of Alaska in comparison with AEROSNOW retrieval. At the same time, it overestimates the AOD along the Bering Strait, northern Europe, and the Siberian central Arctic sea-ice regions, with differences of −12.3 % and 21.7 %, respectively. By contrast, GC consistently underestimates AOD compared with AEROSNOW in summer, when transport from lower latitudes is insignificant and local natural processes are the dominant source of aerosol, especially north of 70° N. This underestimation is particularly pronounced over the central Arctic sea-ice region, where it is −10.6 %. Conversely, GC tends to overestimate AOD along the Siberian and Greenland marginal sea-ice zones by 19.5 % but underestimates AOD along the Canadian Archipelago by −9.3 %. The differences in summer AOD between AEROSNOW data products and GC-simulated AOD highlight the need to integrate improved knowledge of the summer aerosol process into existing models in order to constrain its effects on cloud condensation nuclei, on ice nucleating particles, and on the radiation budget over the central Arctic sea ice during the developing AA period.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.