Abstract

ABSTRACT The optical properties of particulate-matter aerosols, within the context of exoplanet and brown dwarf atmospheres, are compared using three different models: Mie theory, modified mean field (MMF) theory, and discrete dipole approximation (DDA). Previous results have demonstrated that fractal haze particles (MMF and DDA) absorb much less long-wavelength radiation than their spherical counterparts (Mie), however it is shown here that the opposite can also be true if a more varying refractive index profile is used. Additionally, it is demonstrated that absorption/scattering cross-sections, and the asymmetry parameter, are underestimated if Mie theory is used. Although DDA can be used to obtain more accurate results, it is known to be much more computationally intensive; to avoid this, the use of low-resolution aerosol models is explored, which could dramatically speed up the process of obtaining accurate computations of optical cross-sections within a certain parameter space. The validity of DDA is probed for wavelengths of interest for observations of aerosols within exoplanet and brown dwarf atmospheres ($0.2-15~\mu$m). Finally, novel code is presented to compare the results of Mie, MMF, and DDA theories (coral: Comparison Of Radiative AnaLyses), as well as to increase and decrease the resolution of DDA shape files accordingly (spherify). Both codes can be applied to a range of other interesting astrophysical environments in addition to exoplanet atmospheres, for example dust grains within protoplanetary discs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call