Abstract

The most important aerosol properties for determining aerosol effect in the solar radiation reaching the earth's surface are the aerosol extinction optical depth and the single scattering albedo (SSA). Most of the latest studies, dealing with aerosol direct or indirect effects, are based on the analysis of aerosol optical depth in a regional or global scale, while SSA is typically assumed based on theoretical assumptions and not direct measurements. Especially for the retrieval of SSA in the UV wavelengths only limited work has been available in the literature. In the frame of SCOUT-O3 project, the variability of the aerosol SSA in the UV and visible range was investigated during an experimental campaign. The campaign took place in July 2006 at Thessaloniki, Greece, an urban environment with high temporal aerosol variability. SSA values were calculated using measured aerosol optical depth, direct and diffuse irradiance as input to radiative transfer models. The measurements were performed by co-located UV-MFRSR and AERONET CIMEL filter radiometers, as well as by two spectroradiometers. In addition, vertical aerosol profile measurements with LIDAR and in-situ information about the aerosol optical properties at ground level with a nephelometer and an aethalometer were available. The ground-based measurements revealed a strong diurnal cycle in the SSA measured in-situ at ground level (from 0.75 to 0.87 at 450nm), which could be related to the variability of the wind speed, the boundary layer height and the local aerosol emissions. The reasons for SSA differences obtained by different techniques are analyzed for the first time to provide recommendations for more accurate column SSA measurements.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.