Abstract

Abstract. The Mediterranean atmosphere is impacted by a variety of natural and anthropogenic aerosols which exert a complex and variable pressure on the regional climate and air quality. This study focuses on the Western Mediterranean Sea (west of longitude 20∘ E) using the full POLarization and Directionality of the Earth's Reflectances version 3 (POLDER-3)/Polarization & Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar (PARASOL) aerosol data record derived from the operational clear-sky ocean algorithm (collection 3) available from March 2005 to October 2013. This 8.5-year satellite data set includes retrievals at 865 nm of the total, fine-, and coarse-mode aerosol optical depth (AOD, AODF, and AODC, respectively), Ångström exponent (AE), and the spherical/non-spherical partition of the coarse-mode AOD (AODCS and AODCNS, respectively), that have been carefully validated over the study region (Formenti et al., 2018). Here, we analyze the spatial distribution, the seasonal cycle, and interannual variability of this ensemble of advanced aerosol products in three latitude bands (34–38, 38–42, and > 42∘ N) and for three sites (Ersa, Barcelona, Lampedusa) distributed on the western basin. POLDER-3 retrieves the high influence of north African desert dust over the region, which largely controls the spatial distributions (south-to-north decreasing gradient) and seasonal cycles (spring/summer maximum) of both AOD and coarse AOD, including its non-spherical component. In contrast, the coarse spherical component of AOD remains relatively homogenously low all year long over the region, whereas fine-mode AODs are generally more elevated in the eastern part of the region of study, especially north of the Adriatic Sea. From 2005 to 2013, annual POLDER-3 AOD evolution shows a decreasing trend of 0.0030 yr−1 in absolute value at 865 nm (0.0060 yr−1 at 550 nm). Such a downward evolution is much more pronounced and spatially extended for AODF (−0.0020 yr−1 at 865 nm) than for AODC. Our analysis also suggests that the North Atlantic Oscillation (NAO) index explains a significant part of the interannual variability of POLDER-3 AODC, reflecting its role on the frequency of Saharan dust transport over the region. Finally, the POLDER-3 data set highlights an improvement of air quality related to the fine aerosol component, with a marked evolution toward more frequent occurrence of clean conditions (≥ 75 % of daily AODF-865 nm<0.05) at the end of the period of study (2010–2013) over most of the Western Mediterranean Sea, and much less evidence of such a large-scale evolution for the coarse fraction. Therefore, despite the high and variable influence of mostly natural north African dust over the region, the POLDER-3 advanced aerosol data set appears sufficiently accurate to successfully resolve the concurrent downward trend of fine, primarily anthropogenic particles, most likely related to reduced emissions in the surrounding European countries.

Highlights

  • Due to the contributions of diverse natural and anthropogenic sources and because of their relatively short lifetime in the troposphere, aerosols consist in a complex, timely, and spatially variable mixture of particles (Boucher, 2015)

  • We focus on the Western Mediterranean region, west of longitude 20◦ E, considering the main aerosol parameters derived by POLDER-3 ocean operational algorithm: (i) available for all clear-sky pixels: total, fine, and coarse aerosol optical depth at 865 nm, and Ångström exponent between 670 and 865 nm, (ii) available only when the geometrical conditions are optimal: spherical and nonspherical fractions of the AOD in the coarse mode, allowing to assess AODCS and AODCNS at 865 nm

  • North of the Adriatic Sea, POLDER-3 highlights an area characterized by all-year persistent high values of AODF (> 0.12 at 550 nm), most probably reflecting accumulation of pollution particles due to influence of regional anthropogenic sources

Read more

Summary

Introduction

Due to the contributions of diverse natural and anthropogenic sources and because of their relatively short lifetime in the troposphere, aerosols consist in a complex, timely, and spatially variable mixture of particles (Boucher, 2015). Considering the complexity of the aerosol influences in the Mediterranean atmosphere and inherent uncertainties related to long-term satellite aerosol retrievals, our study aims to provide a first interpretation of an independent advanced aerosol satellite data set For this purpose, we investigate the POLDER-3/PARASOL data set (Herman et al, 2005; Tanré et al, 2011), which offers the capacity for daily monitoring of the size-resolved aerosol properties over sea surfaces over its almost 9-year period of operation (Formenti et al, 2018). The advanced aerosol data set provided by POLDER-3 over its operating period, i.e., from March 2005 to October 2013, is investigated in terms of spatial variability and temporal evolution of aerosol load, size, and shape properties over the Western Mediterranean Sea

POLDER-3 instrument and derived aerosol operational products over the ocean
Results
Subregional features
Temporal evolution at selected sites
Monthly time series
Daily time series
Interannual evolution
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call