Abstract

Atmospheric monitoring stations are operated at Barrow, Alaska; Mauna Loa, Hawaii; American Samoa; and South Pole by the Geophysical Monitoring for Climatic Change program to measure the characteristics of gaseous and aerosol species under background conditions. A nearly continuous record of light‐scattering coefficient and condensation nuclei concentration measurements is available for Barrow since 1971, Mauna Loa since 1974, Samoa since 1977, and South Pole since 1974. The Barrow light‐scattering data exhibit a strong annual cycle with a maximum in winter and spring (the Arctic haze) and a minimum in summer. The Barrow condensation nuclei data exhibit a strong semiannual cycle with a maximum coinciding with that of light scattering and an additional maximum about August. The Mauna Loa light‐scattering data show a strong annual cycle with a maximum in April or May caused by long‐range transport of Asian desert dust. The Mauna Loa condensation nuclei data show no significant annual cycle. The Samoa light‐scattering and condensation nuclei data are representative of a clean marine atmosphere and exhibit no significant annual or diurnal cycle. The South Pole light‐scattering data show a complicated annual cycle with a maximum in the austral summer and a minimum about April. The austral winter is dominated by events most likely caused by the transport of sea salt in the troposphere from the coastal regions to the interior of the Antarctic continent. The South Pole condensation nuclei data show a repeatable annual cycle with a maximum in the austral summer and a minimum in the austral winter. Linear least squares trend analyses show no significant trend compared to the standard error about the regression line at any station.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.