Abstract

We present a modified aerosol mass spectrometer (AMS) for the in situ analysis of chemical vapor synthesis processes in hot wall reactors and describe the transfer function of the velocity and kinetic-energy measurement. The AMS is a combination of a quadrupole mass spectrometer (QMS) and a particle mass spectrometer (PMS) and enables the in situ analysis of aerosols with high number concentrations up to 1018m−3. Size distributions of ultrafine particles in the range of 104–107u (amu) can be measured in the PMS. Simultaneously, molecular species up to 300u can be detected in the QMS. In the setup described here a furnace was developed to enable measurement directly at the reactor exit. The formation of silicon carbide (SiC) nanoparticles by thermal decomposition of tetramethylsilane (TMS) was investigated. TMS started to decompose at about 900K and carbosilanes with two [–Si–C–] units were identified as growth species in the synthesis of SiC from TMS. With increasing temperatures particles were formed and grew by coagulation. At higher temperatures sintering of the particles became an important process. Although the particle mass reduced slightly due to a smaller residence time at higher temperatures in the reactor, the particle velocity in the molecular beam of the AMS decreased significantly. A simple model is used to compare the particle velocity in a molecular beam as a function of particle mass. The significant difference in the particle velocity can be explained by a change in the particle shape factor (κp) due to sintering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call