Abstract

Aerosol jet printing is a rather new technology for the deposition of thick film structures offering high line and space resolution. This method offers high potential for miniaturization for thick film structures. The advantages of this technology could be shown with inks carrying a single solid powder (e.g., silver, platinum, ceramic, or glass powder). One of the challenges in printing solid powder mixtures is the differences in the aerodynamic properties of different powders. Those differences result in changes of the mixing ratio within the aerosol jet and therefore poor reproducibility in the finished film. In this work, thick film resistors consisting of RuO2 with particle size <1 μm as the conducting phase and different glass powders with particle size around 1 μm as the isolating phase were investigated. One glass had a density rather close to RuO2, the other glass significantly lower. Inks were made from RuO2/glass powder mixtures, a solvent, and organic additives. After manufacturing, the inks are printed on LTCC and the microstructures of the dried and the fired films were visualized by FIB preparation and SEM. The resistances as well as the temperature coefficients of the resistors were measured and compared with resistor films with an identical solid composition manufactured by conventional screen printing. The results of the obtained resistors are presented and discussed in terms of powder properties, ink dispersion, and printing parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.