Abstract

In this work, we report the manufacturing and experimental analysis of low-cost and eco-friendly paper-based gas sensors for food smart packaging. The hygroscopic properties of paper help detecting the presence of water-soluble gases in an environment provided with relative humidity (RH) above a given threshold (RH > 75%) and discovering the presence of gaseous-markers of the food-spoilage process, like ammonia. Carbon interdigitated electrodes were printed by Aerosol Jet Printing and sintered by Flash Lamp Annealing on chromatographic paper, obtaining a mean resistance value of (231 ± 20) kΩ and (249 ± 28) kΩ for the left and the right electrode, respectively. After being tested at different RH values (75, 80, 90, 100%), and once stabilized, they were tested with different ammonia concentrations (3, 6, 9, and 12 ppm). A proportional resistance decrease was evidenced in increasing ammonia concentration. Considering the baseline at a constant value of RH=75%, the sensors showed a resistance variation of 12% in presence of the lowest concentration of 3 ppm. Three different temperatures were considered during the tests, 5 °C, 15 °C, and 25 °C, evidencing no primary influence of this parameter. Ethanol and acetone were investigated as representatives of interfering compounds such as alcohols and ketones that may be developed during food spoilage. Good selectivity was observed both by studying these compounds individually and together with ammonia. Experimental results showed that 48 ppm of acetone induced a resistance change lower than 3 ppm of ammonia, while 240 ppm of ethanol induced a resistance change comparable to 12 ppm of ammonia.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.